communication complexity - definição. O que é communication complexity. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é communication complexity - definição


Communication complexity         
COMPLEXITY OF SENDING INFORMATION IN A DISTRIBUTED ALGORITHM
Quantum communication complexity
In theoretical computer science, communication complexity studies the amount of communication required to solve a problem when the input to the problem is distributed among two or more parties. The study of communication complexity was first introduced by Andrew Yao in 1979, while studying the problem of computation distributed among several machines.
Computational complexity         
MEASURE OF THE AMOUNT OF RESOURCES NEEDED TO RUN AN ALGORITHM OR SOLVE A COMPUTATIONAL PROBLEM
Asymptotic complexity; Computational Complexity; Bit complexity; Context of computational complexity; Complexity of computation (bit); Computational complexities
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements.
complexity         
PROFESSIONAL ESPORTS ORGANIZATION BASED IN THE UNITED STATES
Los Angeles Complexity; CompLexity Gaming; LA Complexity; Complexity LA; CompLexity; Team CompLexity; CoL.Black; CoL
<algorithm> The level in difficulty in solving mathematically posed problems as measured by the time, number of steps or arithmetic operations, or memory space required (called time complexity, computational complexity, and space complexity, respectively). The interesting aspect is usually how complexity scales with the size of the input (the "scalability"), where the size of the input is described by some number N. Thus an algorithm may have computational complexity O(N^2) (of the order of the square of the size of the input), in which case if the input doubles in size, the computation will take four times as many steps. The ideal is a constant time algorithm (O(1)) or failing that, O(N). See also NP-complete. (1994-10-20)